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ABSTRACT 
In this work, we augmented existing methods for estimating pilot workload ratings with deep neural networks trained 
using data from simulated flight tests in the Vertical Motion Simulator (VMS). We used an existing method, Spare 
Capacity Operations Estimator (SCOPE), along with a recurrent neural network and conducted comparison studies 
between the two methods individually, and when used together. We found that using both methods together can 
improve the result over using either approach alone. In our first test case, we achieved an improved linear correlation 
coefficient of 0.409 over that of SCOPE alone at 0.352 on the training dataset. Through cross validation, we also found 
that the results may be dependent on the split of training vs. validation data, and that further investigation should be 
conducted to understand what additional inputs to the neural network model should be made.  
 

INTRODUCTION 1  

Pilot workload ratings play a key role in validating the control 
system design of an aircraft. However, this metric is difficult 
to predict, and can be a subjective measurement, prone to 
variability. Typically, a workload rating is determined by 
surveying pilots who test a control system via specified 
Mission Task Elements (MTEs). Understanding how to 
predict the workload rating of a vehicle and its control system 
can inform engineers on how to improve designs before 
conducting flight test experiments. Requiring a set of pilots to 
perform flight tests while iterating in the design stage can 
restrict the amount of tuning that can be done before testing. 
Having a model that can gauge workload ratings will benefit 
this design process. Current work in this field involves 
complex models that can reach estimates with as high as 93% 
correlation (Ref. 1) to pilot workload ratings. However, there 
are several factors that could inform a pilot’s workload rating 
that are not contained in these models. For this reason, we 
propose a method that uses deep neural networks that have the 
capability of maintaining a larger set of inputs that could 
influence a pilot’s workload rating. Specifically, we will use 
a learning-based approach which leverages the success of 
existing methods, while using deep neural networks to 
account for unmodeled information from data. 

Pilot workload is a metric that considers how much effort a 
pilot must exert to reach a desired flight performance. This 
metric is particularly difficult to quantify, as there are several 
factors that could influence the workload, and because effort 
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can be a subjective measure. The assessment of the handling 
qualities of an aircraft considers the combination of both pilot 
workload and performance. Presently, a common approach to 
evaluate handling qualities is conducted by meeting 
specifications standardized in ADS-33 (Ref. 2). These metrics 
allow engineers to iterate through the control design process 
and optimize toward Level 1 handling qualities. In practice 
however, there are several other factors that are not expressed 
through these standards when pilots evaluate a control system. 
For this reason, test pilots validate control systems through 
Mission Task Elements (MTEs), in simulated and real flight 
tests, and report workload and handling qualities ratings 
through scales like Bedford ratings (Ref. 3) and Cooper-

 
 

Figure 1. Image of Vertical Motion Simulator cab 
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Harper (Ref. 4) ratings, respectively. As such, workload and 
handling qualities ratings prediction models can be difficult 
to formulate, as there are multiple factors that may influence 
a pilot’s rating.  

Handling qualities provide valuable insight in the design of 
aircraft and their control systems and consider the flight 
experience of both pilots and passengers. While the ability to 
achieve desired task performance is an important factor, the 
effort required to achieve this level of performance should not 
be overlooked. For this reason, we study methods to improve 
prediction methods of pilot workload ratings of aircraft. In 
this work we will be using data taken from simulated flights 
in the Vertical Motion Simulator (VMS) at Ames Research 
Center shown in Figure 1 to produce pilot workload rating 
predictions. 

RELATED WORK 
Previous works on developing models to quantify pilot 
workload have been presented by Roscoe and Wilkinson (Ref. 
5), and Bachelder (Ref. 1). Specifically, the method presented 
in Reference 1, Spare Capacity OPerations Estimator 
(SCOPE), has been applied to several applications to estimate 
workload (Ref. 6), and extended to estimating handling 
qualities ratings (Ref. 7, 8), modeling pilot behavioral 
objectives (Ref. 9) and control models (Ref. 10). However, it 
is unclear if the inputs and parameters of these models are 
sufficient to characterize the human-vehicle interaction. As an 
example, some works have shown that a pilot’s role as an 
active pilot compared to a system supervisor contributes to a 
pilot’s ability to determine the vehicle altitude (Ref. 11, 12), 
and some works use information about optical flow as a 
variable in the workload metric (Ref. 6). Other models 
determine that workload is linearly dependent on the phase 
margin of the system (Ref. 9). As such, it is challenging to 
determine which factors have the largest impact on pilot 
workload and handling qualities, and how control systems can 
be improved according to these metrics.  

While existing approaches to determining pilot cost functions 
(Ref. 9), pilot control models (Ref. 13, 14, 10, 15), and 
workload estimates (Ref. 1) provide relatively good 

approximations, learning-based methods could potentially 
improve upon these models using collected data. Learning-
based methods that apply neural networks to existing methods 
have been used in several robotics applications (Ref. 16, 17, 
18) and could be used to augment current methods for 
determining metrics that are difficult to model analytically 
such as pilot workload rating estimates. These learning 
methods are beneficial in that they leverage models that are 
already known to well approximate the system they are 
applied to. This is in contrast to other learning-based methods 
that start ‘from scratch’ and have longer training times, and 
require far more samples to produce an adequate solution. In 
our approach, we augment existing methods from the 
literature on estimating pilot workload ratings with a neural 
network to produce an improved solution.  

Ultimately, we aim to develop a model that predicts pilot 
workload ratings based on the following inputs: visual 
information, inertial measurements, and pilot inputs from data 
collected in Vertical Motion Simulator (VMS) experiments. 
Our goal is to leverage the flexibility of learning-based 
methods while taking advantage of good models that 
approximate pilot workload ratings. We want to utilize the 
correlations that previous works have shown (Ref. 1) and take 
a learning-based approach that will incorporate previous work 
by first computing the pilot workload estimate approximated 
by these existing methods, and then learning a residual value 
to obtain an improved estimate. We use this approach to 
determine if additional inputs and a neural network will aid in 
formulating a model for workload metrics. 

VMS DATA 
Data was collected via the Vertical Motion Simulator (VMS) 
at NASA Ames Research Center over a series of four weeks 
(Ref. 19). The VMS simulates several aspects of real flight 
for test pilots. The cab of the VMS exerts accelerations based 
on the simulated flight of the vehicle. The pilot is also able to 
view a simulated scene of a virtual environment from the 
windows of the cab, and visual cues on the dashboard give the 
pilot information on the aircraft’s state. The pilot then 
interacts with the environment through control inputs that 

Table 1. Performance Standards Tested for Vertical Maneuver MTEs 

Description Desired 

(ADS-33 / UAM) 

Adequate 

(ADS-33 / UAM) 
Maintain the longitudinal and lateral position within X 

ft of a point on the ground 
 

±3 ft / ±1.5 ft ±6 ft / ±3.9 ft 

Maintain start/finish altitude within X ft 
 

±3 ft / ±1 ft ±6 ft / ±2.6 ft 

Maintain heading within X deg 
 

±5 deg / ±5 deg ±10 deg / ±10 deg 

Complete the maneuver within X sec 13 sec / 30 sec 18 sec / 40 sec 
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replicate those of an aircraft. Tests were conducted for various 
maneuvers and task performance standards.  

For this paper, we focus on a Vertical Maneuver MTE, which 
is described as follows: The pilot begins in a stabilized hover, 
then proceeds to execute a vertical ascent to a specified 
altitude. At the top of this ascent, the pilot stabilizes the 
aircraft, then subsequently descends back to the initial hover 
position. Two variations of this Vertical MTE were tested: 
One designated for Urban Air Mobility (UAM), and another 
based on ADS-33 (Ref. 2). Descriptions of their respective 
performance standards are listed in Table 1. The UAM tests 
were conducted both with and without turbulence while the 
ADS-33 tests were conducted solely without turbulence. 

Additionally, four vehicle configurations were considered, 
three of which use variable rotor speed control (with constant 
pitch), and one which uses collective control (with constant 
rotor speed). The three variable rotor speed control 
configurations vary in their heave disturbance rejection and 
control response specifications. In Figure 2, we show the 
mean and standard deviations of Cooper-Harper Handling 
Qualities Ratings from the VMS data, sorted by performance 
standard, vehicle, and turbulence level. Additional 
information on the VMS experiments and data collected is 
documented by Withrow-Maser et al. in Reference 20.  

APPROACH 
Our approach is to use a combination of existing methods 
from prior works and learning-based methods to develop a 
method to predict pilot workload. The existing approach used 
in this work is from Reference 1, where the authors quantify 
a Bedford rating estimate with the following equation, 

 ,!"# = ./$ +1, (1) 

where ,!"# is the SCOPE Bedford rating estimate, / is the 
workload stimulus, and .,1,	and 4 are constants specific to 
the MTE. Here, the workload metric / is computed as 
follows: 

 / = 5%̇!	5'̇ , (2) 

which is consistent with the Hover MTE application in Ref. 
8. Here,  5%̇! is the standard deviation of the position error 
rate between the aircraft and its target, and 5'̇ is the standard 
deviation over each run’s time series data of the stick control 
rate. Once the Bedford rating estimate is computed using 
SCOPE, this value is then used with the output of a neural 
network that is trained on the ground truth Bedford rating 
from data to obtain an improved estimate as follows, 

 
,6!"# = ,!"# + 7 = 	./$ +1 + 7, 

(3) 

where ,6!"# is our Bedford rating estimate, and 7 is the learned 
output of a neural network. A visualization of the approach 
presented in this paper is shown in Figure 3.  

By focusing solely on the UAM Vertical Maneuver MTE, we 
can use the data to produce the necessary SCOPE parameters 
specific to this MTE, and to train the neural network. The data 
input to SCOPE includes the time series data of the pilot’s 
collective stick input, and the vehicle altitude. The data input 
to the neural network is a sequence of images of the 
environment that would have been seen through the front 
window of the cab during the maneuver. This allows us to see 
if using a neural network with image inputs helps to capture 
information about pilot workload that isn’t captured by the 
SCOPE inputs. 

Figure 2. Mean and Standard Deviation of Cooper-Harper Handling Qualities Ratings Vertical Maneuver MTE 
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Because the current VMS dataset solely contains performance 
metrics and Cooper-Harper Handling Qualities ratings, we 
use a mapping defined by Table 2 from Ref. 7 and 8 to convert 
to Bedford Workload Ratings.  

 
SCOPE Approach 

The SCOPE approach detailed in Reference 1 depends on the 
availability of data of several runs of the same MTE. In this 
work, we implement a form of SCOPE which requires as 
input time series information of the collective stick input, and 
vehicle altitude. From this information, we compute a finite 
difference to obtain the rate of change of this information and 
use these as detailed in the SCOPE approach.  

Because some parameters involved in the SCOPE approach 
are specific to an MTE, only Vertical Maneuver UAM MTEs 
are considered, both in cases with turbulence and in cases 
without. We note that the use of data from a variety of vehicle 
control law configurations, and turbulence conditions may 
inject additional noise into our data, as testing showed that 
some control laws are able to minimize horizontal drift better 
than others. The parameters that can be adjusted in the 

SCOPE approach are listed in Table 3, and the corresponding 
values used in this work are also listed. 

 
The approach detailed in Reference 1 uses Equation 1 to 
compute an estimated Bedford rating and is referred to as 
SCOPE. As shown in Figure 3, there are a few steps that must 
be taken to get to Equation 1. Firstly, it is necessary to have 
the stick input rates and position error rates of the aircraft 
throughout the maneuver. These signals are first filtered by a 
low-pass filter defined at a specified frequency 8(. In our 
approach, we use 8( = 2	9:;/=>?, as this value was used in 
previous work applied to a Hover MTE (Ref. 8). The resulting 
signal after the low-pass filter is then a filtered signal defined 
by the subscripted @. Next, the standard deviation of these 
signals across time are computed and multiplied with one 
another to produce the workload stimulus /. In some works, 
SCOPE is applied at each time step of the flight, computing a 
standard deviation across a sliding window (Ref. 21, 22). 
However, here we only compute the standard deviation for the 
whole trajectory. In this paper, we tested two values of 4 =
0.07 and 4 = 0.6 (chosen based on previous works) and 
found that a value of 4 = 0.07 produced higher correlation 
values. Last of the tunable parameters are constants . and 1. 
These are found by implementing least squares to find the . 
and 1 parameters that best fit the estimates to the known 
Bedford ratings. In References 7 and 8, the authors perform 
outlier rejection on the data, and use a sample Pearson 

Table 2. Mapping of Performance and Bedford 

Rating to Cooper Harper Handling Qualities 

Ratings (Ref. 7, 8). 

Performance Bedford Rating Cooper Harper 
Rating 

Desired 1 ≤ , < 5 1 ≤ DE < 5 
Adequate , < 6 5 ≤ DE < 6 
Adequate 6 ≤ , < 7 6 ≤ DE < 7 
Inadequate , < 8 7 ≤ DE < 8 
Inadequate 8 ≤ , < 9 8 ≤ DE < 9 
Inadequate 9 ≤ , < 10 9 ≤ DE < 10 
Inadequate , = 10 DE = 10 

 

Table 3. SCOPE Vertical MTE Parameters 

Parameter Value 
8( 2 rad/sec  
4 0.07  
. 32.34  
1 −28.34  

 

Figure 3. A visualization of our approach, using SCOPE and a Recurrent Neural Network (RNN) to produce an 

estimate of pilot workload based on stick rate inputs, position error rates, and an image sequence. 
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correlation coefficient, G, to measure how well the estimates 
match the data. This coefficient is calculated by  

 
G =

∑ (,) − ,J)(,!"#,) − ,J!"#)
+
),-

L∑ (,) − ,J).
+
),- L∑ M,!"#,) − ,J!"#N

.+
),-

 
(4) 

where ,) and ,!"#,) are the sample points of the Bedford 
ratings and the corresponding Bedford estimates, ,J  and  ,J!"#  
are the averages of the Bedford ratings and Bedford estimates, 
and O is the number of samples. While in Equation 4 we use 
,!"# to indicate the SCOPE Bedford estimate, the equation 
could be applied to compute the correlation coefficient for the 
SCOPE with Neural Network estimate by replacing this 
variable with ,6!"#. This Pearson correlation coefficient ranges 
in values between -1 and 1, where -1 indicates a negative 
linear correlation, 0 no correlation, and 1 a linear correlation. 
In Figure 4, we show how the Pearson correlation coefficient 
changes as the amount of data rejected from an outlier 
rejection method increases.  

 

Figure 4. Correlation vs. Fraction of Population 

The parameters of . and 1 were computed at the point 
marked in Figure 4, where the fraction of the population was 
0.8077 (corresponding to 84 samples), and the Pearson 
correlation coefficient was 0.66. 

This correlation coefficient was lower than expected but 
could be attributed to the variety of vehicle control system 
configurations tested, as well as the presence of turbulence in 
only a subset of the data points. We choose to use this varied 
dataset to keep as many data points as possible to create a 
single model to estimate workload ratings for the UAM 
Vertical Maneuver MTE. 

RNN Approach 

The first step in constructing the proposed learning-based 
approach is to ensure that the image data is suited to be used 
as input to the neural network. To do this, we use existing 
video logs of the VMS flight tests taken at 30 frames per 
second, convert these to still images, and crop the relevant 
views. Samples of such images (nonconsecutive) are shown 
in Figure 5. Here we can also see the visual cues seen by the 
pilot, where the goal pose can be found by aligning the small 
black box in the center of the larger white box at both the top 
and bottom of the maneuver. 

   

Figure 5. Sample Images for Neural Network input 

A lower sampling rate of 15 frames per second was used 
instead of the original 30 frames per second to reduce the 
number of still image inputs. To further reduce the size of the 
input images, we first grayscale the images before feeding 
through the network. From our dataset, we consider runs of 
the Vertical Maneuver MTE UAM performance standard for 
all vehicle configurations and both turbulence levels. 
Additionally, we consider only runs in which there is desired 
performance, and Cooper Harper ratings range from one to 
five, to reflect a one-to-one mapping between Cooper-Harper 
and Bedford Rating scales in Table 3. The set of runs with 
these conditions contains 73 total samples. This value is lower 
than the number of samples used to compute the SCOPE 
parameters because video feed was not recorded for all MTE 
runs.  

Once the data is prepared for training, it is separated into a 
training set and a validation set. In our implementation, we 
use 47 datapoints for training, and 26 datapoints for 
validation. This allows us to test whether the neural network 
portion of our model performs well on data unseen during 
training. Training is conducted in a supervised fashion, where 
a series of images and raw inputs are used as input. We use 
SCOPE (Ref. 1) to generate a preliminary workload estimate. 
The output of the neural network is added to this value, and a 
Huber loss computed on the resulting sum:  

 
PQ== = R0.5

M,) − ,6)N
.
,				S@	|,) − ,6)| < 1

|,) − ,6)| − 0.5,												QUℎ>9WS=>
 

(5) 
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In our loss function, S is the sample index, , is the ground 
truth Bedford rating from the VMS data, and ,6!"# is the output 
from our combined SCOPE and Neural Network method. To 
minimize this equation, the Adam optimizer (Ref. 23) is used 
on the weights of the neural network.  

Due to the sequential nature of our input data, a Recurrent 
Neural Network in the form of a Long-Short Term Memory 
(LSTM) block is used to track the time varying information 
of the data across each maneuver. Figure 6 shows that the 
Neural Network is comprised of a Convolutional Neural 
Network (CNN) that processes each individual image input, 
that then passes the output to a max pool layer and LSTM 
block. In training, each image in the sequence is passed 
through the network, and only the final output value is trained 
on the target Bedford rating from data. This network 
architecture is similar to that of Ref. 24 which also requires 
collecting time varying information in training. 

 

Figure 6. Neural Network Architecture 

In training we used a decaying learning rate, where three 
learning rates of X ∈ [0.01, 0.001, 0.0001] are used, starting 
with the largest value. Additionally, we chose to divide the 
training data into batches of 10 datapoints and run for 100 
epochs per learning rate. In this work, we used a single output 
channel from the CNN with a Rectified Linear Unit (ReLU) 
activation function, and a max pool function with kernel size 
4. 

Ultimately, to test whether our method generates predictions 
with good linear correlation to the true Bedford Ratings, we 
generated correlation plots between SCOPE, pilot Bedford 
ratings, and our method. Correlation metrics allowed us to 
determine whether our method outperforms SCOPE alone. 

RESULTS 
After training the neural network as described in the previous 
section, the resulting training loss and validation loss 
decreased as shown in Figure 7. The goal was to see if our 
network was learning generalizable information from the 
image sequence training data. For this reason, we tested the 
loss and correlation of our method on two different datasets: 
a training dataset and a validation dataset. Only the training 
dataset was used during the training process, while the 
validation data was unseen until test time. 

Here we show the last few hundred iterations of the training 
and validation loss, along with the value of the loss obtained 
using only SCOPE for each subset of the data. We see that the 
loss metric of using SCOPE alone is higher for both the 
training and validation subsets of the data. The full loss plot 
for all iterations can be seen in Figure 13 in the Appendix 
section. With this trained network, we also tested whether 
using this neural network with SCOPE would produce a 
higher correlation coefficient to the data than SCOPE alone. 
Seeing a higher correlation coefficient with the validation 
dataset would tell us if the network was overfitting to the 
training data instead of generalizing the relationship between 
image sequences and pilot workload ratings. In Figure 8 we 
show the correlation with the validation data of our method 
vs. using SCOPE alone. 

As shown by the correlation coefficients in Figure 8, we found 
that our method was able to produce a higher correlation 
coefficient on the validation data with R = 0.148 compared to 
SCOPE alone, which produced a correlation coefficient of 
0.125. This increase, along with the reduced loss value for 
both training and validation suggest that the image inputs and 
neural network help to improve the Bedford workload 
estimate of SCOPE. In order to further explore this approach, 
we perform cross validation and consider training a neural 
network without SCOPE.  

Cross Validation  

In this section, we verify whether the results presented in the 
preceding section were dependent on the data separation 
between training and validation. While our results showed 
that using image inputs to an RNN with SCOPE produced 
higher correlation coefficients and lower loss values both for 
the training data and validation data, we want to test whether 
this would continue to be the case for other groupings of data. 
For this reason, we ran the same test on a case where a 
different split of training and validation data was chosen. We 

Figure 7. Training and validation loss of a neural 

network with SCOPE 
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will refer to this split of data as Data Split 2, and the first split 
of data as Data Split 1. Each of these data splits have the same 
amount of data points in training and validation. The loss plot 

for the last few iterations of this case is shown in Figure 9, 
while the full plot of all iterations is shown in Figure 14 in the 
Appendix section. 

From changing how the data was split, we can see that while 
the training loss converges to a value very similar to that of 
SCOPE, the validation loss did produce a lower loss than 
SCOPE alone. Again, we also present the linear correlation 
between the ground truth labels and the estimated Bedford 
ratings in Figure 10 for this case. 

From Figure 10, we see a slight improvement in the training 
correlation coefficient and slight reduction in the validation 
correlation coefficient. This test suggests that the initial 
performance of the approach to using SCOPE with a neural 
network showing improvements in both linear correlation 
coefficients and loss may be dependent on how the data was 
split, and that a closer look at the types of data in each training 
and validation split should be made in future work.  

 

Figure 8. Correlation plots and coefficients (-1 < R < 1) between estimate methods for training and validation 

datasets. a) SCOPE with NN on training data, b) SCOPE with NN on validation data, c) SCOPE alone on training 

data, d) SCOPE alone on validation data. 

 

Figure 9. Training and validation loss of neural 

network with SCOPE with Data Split 2 
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Effect of SCOPE 

Another variation we consider is the effect of using the 
SCOPE approach from Reference 1. The motivation for using 

a learning-based approach with SCOPE was based on the 
small amount of data available for training. The idea was to 
use the image data to capture unmodeled dependencies of 
workload ratings to the visual scene of the environment. To 
see if this approach was necessary, we also compared our 
method of using SCOPE with a neural network to a neural 
network alone. 

In Figure 11, we can see that the training and validation loss 
are both lower than the SCOPE approach, which may suggest 
that using a neural network alone might produce improved 
results compared to using a combination of both a Neural 
Network and SCOPE. However, a further look at the linear 
correlation coefficient plots shown in Figure 12 allows us to 
see that this neural network trained without SCOPE learns to 
output a constant value of 5 for each input from our data. A 
plot of the loss for all iterations is shown in the Appendix 
section in Figure 15. 

While lower training and validation losses are generally 
considered to be good, we can see here that it is important to 
also continue to consider the linear correlation coefficients, 

Figure 10. Correlation plots and coefficients (-1 < R < 1) between estimate methods for training and validation 

datasets. a) SCOPE with NN on training data from Data Split 2, b) SCOPE with NN on validation data from Data 

Split 2, c) SCOPE alone on training data from Data Split 2, d) SCOPE alone on validation data from Data Split 2. 

 

Figure 11. Training and validation loss of neural 

network alone 
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and generally the outputs of the network. A model which 
outputs the same value no matter the input is not particularly 
helpful in determining the relationship between the 
experience of the pilot during flight and their workload 
ratings. We can also observe that using a neural network alone 
produces a lower correlation coefficient than using a neural 
network with SCOPE, suggesting that using SCOPE with a 
Neural Network does aid in the model’s performance. 

A summary of the results from our tests are shown in Table 4. 
Initial results in the first original test case show performance 
improvements compared to using SCOPE alone in both loss 
metrics and linear correlation metrics. However, a cross 
validation showed that this was not necessarily the case across 
different splits of training and validation data, and that further 
investigation is necessary. Lastly, we see a benefit in using 
SCOPE with a Neural Network, where we see that the 
network alone learns to directly output a constant value 
regardless of the input.  

CONCLUSIONS 
In this paper we present a method to estimate pilot workload 
ratings by augmenting an existing method with a recurrent 
neural network. We showed that using SCOPE with a 
recurrent neural network with the architecture shown in 

Figure 6 with inputs of image sequences helped to improve 
the correlation metric after training for 100 epochs per 
learning rate with a data batch size of 10. Further, we 
implemented cross validation and found that there is need for 
further investigation in the relationship between how the data 
is split and the performance of this approach. Lastly, we 
showed that our method in using SCOPE with a Neural 
Network produced a more informative model than using a 
Neural Network alone. 

We also found that while the use of a neural network 
improved correlation coefficients in the original case, the 
overall correlation coefficients themselves were relatively 
low for SCOPE overall when all data points in the dataset 
were used. This generally lower correlation coefficient could 
be due to the diversity of the data that was collected, amongst 
several pilots for four different vehicle control law 
configurations in two different turbulence modes. This 
diversity in data may also contribute to the result found in the 
cross validation, where additional inputs to the estimation 
model may be required to differentiate these different 
attributes in the data (i.e. turbulence level, vehicle 
configuration, etc.). 

Table 4. Correlation Coefficients of SCOPE with trained RNN, and SCOPE alone for training and 

validation datasets. 

Test Case Dataset Train / Val Split Method Training Set Validation Set 

Original Dataset Split 1 SCOPE w/ RNN G = 	0.409 G = 	0.148 
  SCOPE G = 	0.352 G = 	0.125 
Cross Validation  Dataset Split 2 SCOPE w/ RNN G = 	0.240 G = 	0.336 
  SCOPE G = 	0.229 G = 	0.347 
Neural Network Alone Dataset Split 1 RNN G = 	0.369 G = 	0.413 
  SCOPE G = 0.352	 G = 0.125	 

 

Figure 12. Correlation plots and coefficients (-1 < R < 1) between estimate methods for training and validation 

datasets. a) NN on training data from Data Split 1, b) NN on validation data from Data Split 1. 

 



 

 10 

FUTURE WORK 

In future work, other inputs could be tested using a Neural 
network, to determine if there are other metrics that might 
help to further increase the correlation between estimated 
pilot workload ratings and the data. Some inputs that could be 
used are a known turbulence level or vehicle configuration. 
Another interesting relation to explore is the pilot induced 
oscillation, and how this may play into handling qualities and 
workload ratings. 

Further, the downside to using a neural network to define the 
relationship between the image inputs and workload estimates 
is that relevant contribution of the image inputs to the 
improved workload estimates are not explicitly known. 
Future work in investigating the explainability of the 
convolutional neural network could be tested, to determine 
what parts of the images are most relevant to the neural 
network. 

Author contact: Keiko Nagami keiko.nagami@nasa.gov 
Carlos Malpica carlos.a.malpica@nasa.gov  
Mac Schwager schwager@stanford.edu  
 

APPENDIX 
In this section we include figures of the loss plots for all 
iterations from each of the test cases that were run in the 
Results section. The first few iterations are omitted in Figures 
7, 9, and 11 in the Results section for clarity. 

 
Figure 13. Full training loss plot for all iterations of first 

test case. 

 

 
Figure 14. Full training loss plot for all iterations of cross 

validation test case. 

 
Figure 15. Full training loss plot for all iterations of 

neural network only test case. 
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